Computing Low-Rank Approximation of a Dense Matrix on Multicore CPUs with a GPU and Its Application to Solving a Hierarchically Semiseparable Linear System of Equations
نویسندگان
چکیده
Low-rank matrices arise in many scientific and engineering computations. Both computational and storage costs of manipulating such matrices may be reduced by taking advantages of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore CPUs with a GPU.We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting, on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and restricted pivoting.Our performance results on two eight-core Intel SandyBridgeCPUswith oneNVIDIAKeplerGPUdemonstrate that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson’s equations demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs, and the construction time can be further reduced by 10%–50% using the GPU.
منابع مشابه
Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher
Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...
متن کاملEfficient Scalable Algorithms for Hierarchically Semiseparable Matrices
Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compr...
متن کاملEfficient Scalable Algorithms for Solving Dense Linear Systems with Hierarchically Semiseparable Structures
Hierarchically semiseparable (HSS) matrix techniques are emerging in constructing superfast direct solvers for both dense and sparse linear systems. Here, we develop a set of novel parallel algorithms for key HSS operations that are used for solving large linear systems. These are parallel rank-revealing QR factorization, HSS constructions with hierarchical compression, ULV HSS factorization, a...
متن کاملSuperfast Multifrontal Method for Large Structured Linear Systems of Equations
In this paper we develop a fast direct solver for large discretized linear systems using the supernodal multifrontal method together with low-rank approximations. For linear systems arising from certain partial differential equations such as elliptic equations, during the Gaussian elimination of the matrices with proper ordering, the fill-in has a low-rank property: all off-diagonal blocks have...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific Programming
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015